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Abstract

In this paper a model was developed to describe the shear flow resistance force and torque acting on a
fine particle as it slides on the slip surface of a rising gas bubble. The shear flow close to the bubble surface
was predicted using a Taylor series and the numerical data obtained from the Navier–Stokes equations as a
function of the polar coordinates at the bubble surface, the bubble Reynolds number, and the gas hold-up.
The particle size was considered to be sufficiently small relative to the bubble size that the bubble surface
could be locally approximated to a planar interface. The Stokes equation for the disturbance shear flows
was solved for the velocity components and pressure using series of bispherical coordinates and the bound-
ary conditions at the no-slip particle surface and the slip bubble surface. The solutions for the disturbance
flows were then used to calculate the flow resistance force and torque on the particle as a function of the
separation distance between the bubble and particle surfaces. The resistance functions were determined by
dividing the actual force and torque by the corresponding (Stokes) force and torque in the bulk phase.
Finally, numerical and simplified analytical rational approximate solutions for force correction factors
for sliding particles as a function of the (whole range of the) separation distance are presented, which
are in good agreement with the exact numerical result and can be readily applied to more general modelling
of the bubble–particle interactions.
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1. Introduction

Interaction between fine solid particles and rising air bubbles in water is critical to the collection
of hydrophobic (water-repellent) particles in froth flotation which is widely used in the mineral
and coal processing industry (Jameson et al., 1977; Schulze, 1983). The bubble–particle collection
interaction involves a number of steps, which are usually divided into three main groups, namely,
the collision (encounter), attachment and detachment interactions. The bubble–particle collision
determines the efficiency of the bubble–particle encounter on the basis of the physics of the par-
ticle and bubble motions and hydrodynamics of liquid flow, and has been studied most extensively
(Dai et al., 2000; Dobby and Finch, 1987; Jameson et al., 1977; Nguyen, 1999; Schulze, 1989).
Both the attachment and detachment interactions strongly depend on the interfacial properties
of the particle–water and bubble–water interfaces, as well as the hydrodynamic forces operating
at very short separation distances, which are of the order of the thickness of the thin intervening
liquid films between the bubble and the particles.

During the encounter interaction, the particle�s approach to the bubble is influenced by the
Stokes drag force: F = �6plR(V �W), where R is the particle radius, l is the liquid viscosity,
and V and W are the vectors of the particle and fluid velocities, respectively. When the particle
approaches the bubble surface with an intervening liquid film, the hydrodynamic resistance in-
creases rapidly. This deviation of the hydrodynamic resistance is due to the liquid film and can
be accounted for using the hydrodynamic resistance functions. The Stokes drag force is modified
to give

• In the (radial) direction of the bubble–particle centreline:
F r ¼ �6plRV rf1 þ 6plRW rf2 ð1Þ

• In the (tangential) direction perpendicular to the centreline:
F h ¼ �6plRV hf3 þ 6plRW hf4 ð2Þ
where the subscript �r� and �h� describe the radial and tangential components of the drag force and
the particle and fluid velocities, respectively, as shown in Fig. 1, and functions fi (i = 1–4) describe
the hydrodynamic resistance functions. For the interaction between a solid particle and a solid
surface, all the four hydrodynamic resistance functions are available as a function of the separa-
tion distance between the particle and the solid surface (Goldman et al., 1967a,b; Goren and
O�Neill, 1971; Happel and Brenner, 1965a). For the interaction between a solid particle and an
air bubble, where the tangential velocity component is non-zero, the surface will be described a
‘‘slip surface’’, and the following hydrodynamic resistance functions are available as a function
of the separation distance: f1, f2 (Nguyen and Evans, 2002) and f3 (Nguyen and Evans, 2004).

The aim of this paper is derive the exact solution for the hydrodynamic resistance function f4
for the interaction between a solid particle and an air bubble with a slip surface, which can be used



Bubble

zR

e

θ

ω
ϕ

Fig. 1. Spherical particle with radius R in the close proximity to the slip surface of a rising bubble. The flow field
passing the particle comprises the shear (inset) and axisymmetric stagnation flows in the directions tangential and
normal to the bubble surface, respectively. The local cylindrical coordinate system (x,u,z) is used to model the
disturbance flow.
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in the modelling of the bubble–particle attachment in froth flotation. We reasonably assume that
the particle size (which is typically of the order of 10 lm) in flotation is significantly smaller than
the size of air bubbles (which is typically of the order of 1 mm) so that the local geometry of the
particle–bubble surface can be approximated to the particle–planar surface geometry. We also fo-
cus on the case when the deformation of the gas–liquid interface due to the particle–bubble inter-
action is insignificant. This is particularly true for the particle sliding motion over the bubble
surface and significantly simplifies the analysis presented in this paper. Further aspects of the bub-
ble deformation will be given in the discussion. Furthermore, it can be assumed that the undis-
turbed-by-the-particle flow of liquid close to the bubble surface is a creeping flow, and, thus, it
can be decomposed into two independent additive flows, namely, the flows normal and tangential
to the bubble surface, due to the linearity of the governing Stokes equations. The former flow is
therefore a stagnation flow while the latter flow is a cross shear flow. Figs. 1 and 2 show the shear
flow needed in developing the hydrodynamic resistance function f4.
2. The shear flow close to the slip surface of an rising air bubble

It is required to quantify the velocity Wh (in the second term of Eq. (2)) of the shear flow of the
liquid close to the slip surface of the bubble in the absence of the particle. For the sake of simplic-
ity, the subscript ‘‘h’’ associated with the shear flow will be dropped hereafter.
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Fig. 2. Particle (stationary relative to the interface) in the shear flow parallel to a slip planar gas–liquid interface and the
local cylindrical coordinates (x,u,z). The shown parabolic profile for the undisturbed velocity satisfies the condition of
zero stress in the global spherical coordinates with the origin located at the bubble centre in Fig. 1, which gives dW/
dr �W = 0 at r = Rb.
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For air bubbles with very low Reynolds numbers, the shear flow can be predicted from the
Hadamard–Rybczynski solution, which gives (Clift et al., 1978):
W ðr; hÞ ¼ U 1� 2þ 3j
4þ 4j

Rb

r
� j
4þ 4j

Rb

r

� �3
( )

sin h ð3Þ
where j is the ratio of the air to water viscosities, r and h are the radial and polar coordinates
measured from the bubble centre (Fig. 1). Rb and U are the bubble radius and slip velocity, respec-
tively. Since j� 1, Eq. (3) can be simplified to
W ðr; hÞ ¼ U 1� Rb

2r

� �
sin h ð4Þ
The potential flow has also been used to model the shear flow on air bubbles, giving
W ðr; hÞ ¼ U 1þ 1

2

Rb

r

� �3
( )

sin h ð5Þ
This solution is, strictly speaking, valid for inviscid liquids. However, all real liquids have non-
zero viscosity so that the concept of an inviscid liquid and the potential flow are an idealization.
Nevertheless, the potential flow can be a useful reference point for real liquid flows at high Rey-
nolds number. For example, at high Reynolds number, viscous effects may be insignificant in the
large region of the flow field which is far from the bubble surface. These regions may be treated as
if the liquid were inviscid. In the boundary layer adjacent to the bubble surface, the effect of vis-
cosity must be considered. In the boundary layer theory, the derivatives with respect to the
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streamwise coordinate are usually neglected, relative to those in the transverse direction, leading
to (Moore, 1963)
W ðr; hÞ
U

¼ 1þ 1

2

Rb

r

� �2
( )

sin h� 4ð1� cos hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos h

pffiffiffiffiffiffi
Re

p
sin h

f
3ðr=Rb � 1Þ

ffiffiffiffiffiffi
Re

p
=4

ð1� cos hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos h

p
� �

ð6Þ
where the function f is described by f ðyÞ � expð�y2Þ=
ffiffiffi
p

p
� y erfc ðyÞ and erfc(y) is the comple-

mentary error function. The bubble Reynolds number is Re = 2dRbU/l, where d and l are the
liquid density and viscosity. The first term in Eq. (6) is the velocity of the shear flow predicted
by Eq. (5) from the potential flow theory. Since the boundary layer thickness is proportional to
1/
p
Re, the boundary layer theory is less accurate for low Reynolds numbers. Quantitatively,

our numerical results (Nguyen, 1999) obtained from the Navier–Stokes equations using the
CFD code FLUENT show that Eq. (6) is accurate if Re > 150.

For 150 > Re > 1, no analytical solution for W(r,h) is available. However, the shear flow close
to the bubble surface at the intermediate Reynolds numbers can be empirically described using a
Taylor series by (Nguyen, 1994, 1999)
W ðr; hÞ ¼ ðW Þr¼Rb
þ ðr � RbÞ

oW
or

� �
r¼Rb

þ ðr � RbÞ2

2

o2W
or2

� �
r¼Rb

þO ðr � RbÞ3
n o

ð7Þ
In this equation, the velocity and its derivatives at the bubble surface can be determined from the
numerical data for the surface velocity, surface vorticity and surface pressure, obtained from the
numerical computation solution to the Navier–Stokes equation. For a slip bubble surface, the sur-
face velocity in Eq. (7) is non-zero and describes the uniform component of the shear flow, while
the other two terms on the right-hand side of Eq. (7) describe the linear and parabolic components
of the shear flows, respectively. The rational approximation based on the asymptotic analysis for
the low and high Reynolds numbers flows described by Eqs. (4) and (6) can be used to describe the
numerical data the surface velocity and its derivatives, leading to the following prediction for the
required shear flow
W ðr; hÞ
U

¼ r
Rb

ðX þ Y cos hÞ sin h
2

þ r
Rb

� 1

� �2 ðM þ N cos hÞ sin h
2

þO ðr � RbÞ3
n o

ð8Þ
where the model parameters X, Y, M and N are functions of the bubble Reynolds number, as well
as the gas hold-up. These functions are described in the literature (Nguyen, 1999).

It is important to note that Eq. (8) is empirically developed from the full numerical results for
the leading hemispherical surface (i.e. 0 6 h 6 p/2) of the rising bubbles only. Consequently, the
equation should not be applied in instances where flow field over the entire surface of the bubble is
required, for example, in the drag force determination. This is especially the case when the rear
surface of the bubble is likely to be immobile, such as when surfactants or other impurities are
present in the liquid. The inclusion of the second-order term in Eq. (8) for the undisturbed shear
flow is also important since the first-order prediction is usually poor for the modelling of the par-
ticle–bubble attachment interaction (Dobby and Finch, 1986; Nguyen, 1993). In the following,
Eq. (8) for the shear flow velocity as a function of the radial coordinate will be used to derive
the local disturbance flow by the presence of the particle.
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3. Governing equations for the local disturbance flow

The local cylindrical coordinate system (x,u,z), as shown in Figs. 1 and 2, is used to describe
the shear flow which is locally disturbed by the particle. The origin of the system is located at the
intersection between the bubble–particle centreline and the bubble surface. The z-axis passes
through the centre of the particle, while the x and u axes lies on the plane tangential to the bubble
surface. To predict the resistance function f4 for the liquid flow in Eq. (2), the solid sphere is as-
sumed stationary in a shear flow at a distance H from a slip gas–liquid interface. For the local
disturbance liquid flow the equations of momentum and continuity in the cylindrical coordinates
(x,u,z), with the corresponding velocity components (wx, wu, wz) and pressure p can be described
by
o

ox
p
l

� �
¼ r2wx � wr

x2
� 2

x2

owu

ou
ð9Þ

1

x
o

ou
p
l

� �
¼ r2wu �

wu

x2
þ 2

x2

owx

ou
ð10Þ

o

oz
p
l

� �
¼ r2wz ð11Þ

1

x
oðxwxÞ
ox

þ 1

x
owu

ou
þ owz

oz
¼ 0 ð12Þ
In these equations, the Laplace operator is defined by
r2 � o2

ox2
þ 1

x
o

ox
þ 1

x2

o2

ou2
þ o2

oz2
ð13Þ
4. Boundary conditions for the local disturbance shear flow

In terms of the local cylindrical coordinate system (x,u,z), as shown in Fig. 2, the velocity of
the undisturbed shear flow given by Eq. (8) can be rewritten as a function of z by
~W ¼ U
X2

l¼0

Glðz=RÞl~e ð14Þ
where z = r � Rb and is the dimensional distance (coordinate) measured from the interface,~e is
the unit vector in the direction tangential to the bubble surface (Fig. 1), and Gl�s are functions
of the polar coordinate, h, and the bubble model parameters X, Y, M and N. Furthermore, be-
cause of the linearity of the Stokes equations and the shear flow described by Eq. (7), without loss
of generality we can consider the basic undisturbed flow which can be mathematically described
by
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~W ¼ UGlðz=RÞl~e ð15Þ

The tangential unit vector in the cylindrical coordinates yields ~e ¼~ex cosu�~eu sinu (Fig. 2),
allowing the cylindrical components of the shear flow velocity to be described by
W x ¼ z
R

� �l
UGl cosu ð16Þ

W u ¼ � z
R

� �l
UGl sinu ð17Þ

W z ¼ 0 ð18Þ

The first boundary condition for the velocity of the disturbance flow by the presence of the par-
ticle can be derived from the fact that far from the particle surface the flow disturbance does not
occur, and the undisturbed and disturbance flow velocities must be the same, leading to:
~wð1Þ ¼ ~W ð19Þ

The boundary conditions applied at the particle surface can be described by
~w ¼ 0 ð20Þ

In the cylindrical coordinates, Eq. (19) for the far field boundary conditions gives
wxð1Þ ¼ z
R

� �l
UGl cosu ð21Þ

wuð1Þ ¼ � z
R

� �l
UGl sinu ð22Þ

wzð1Þ ¼ 0 ð23Þ
5. Method and solution for the local disturbance shear flow

In the cylindrical coordinates shown in Fig. 2, the solutions for the velocity components and the
pressure of the disturbed flow can be simplified by employing the following transformations:
wx ¼ bþ z
R

� �l
� �

UGl cosu ð24Þ

wu ¼ c� z
R

� �l
� �

UGl sinu ð25Þ

wz ¼ eUGl cosu ð26Þ

p ¼ klUGl cosu ð27Þ

where b, c, e and k are functions of x and z only. Substituting Eqs. (24)–(27) into Eqs. (9)–(12), the
governing equations become:
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ok
ox

¼ L2
0ðbÞ �

bþ 2c
x2

ð28Þ

k
x
¼ �L2

0ðcÞ þ
2bþ c
x2

ð29Þ

ok
oz

¼ L2
0ðeÞ ð30Þ

ob
ox

þ bþ c
x

þ oe
oz

¼ 0 ð31Þ
In these equations, L2
0 describes one of the differential operators L

2
m for m = 0, 1, and 2, defined by
L2
m � o2

ox2
þ 1

x
o

ox
� m2

x2
þ o2

oz2
ð32Þ
The solution of the linear differential equations (28)–(30) can be expressed by the following
equations:
b ¼ xk
2

þ a0 þ a2
2

ð33Þ

c ¼ a2 � a0
2

ð34Þ

e ¼ zk
2
þ a1 ð35Þ
where am satisfies the differential equation L2
mðamÞ ¼ 0 for m = 0, 1, and 2, and has the following

solution (Batchelor, 1972)
am ¼ ðcosh n� cos gÞ1=2sinmg
X1
n¼m

Cm;n coshðqnnÞ þ Sm;n sinhðqnnÞ½ �P ðmÞ
n ðcos gÞ ð36Þ
where Cm,n and Sm,n are the integration constants. P ðmÞ
n ðcos gÞ describes the mth derivative of the

Legendre polynomial Pnðcos gÞ of order n with respect to cosg. This derivative is also described by
P 0
n and P 00

n for m = 1 and 2, respectively. For m = 0, the derivative is simply the Legendre polyno-
mial. qn in Eq. (36) is a function of the summation index n and is defined by
qn ¼
2nþ 1

2
ð37Þ
In Eq. (36), n and g are the bispherical coordinates, which are linked to the cylindrical coordinates
(x,z) by
x ¼ c sin g
cosh n� cos g

ð38Þ

z ¼ c sinh n
cosh n� cos g

ð39Þ
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where c is a constant determined by applying Eqs. (38) and (39) at the particle surface, n = s. We
obtain
c ¼ R sinh s ð40Þ
The solution for k can be obtained by substituting the solution for am (m = 1, 2 and 3), described
by Eq. (36), into Eqs. (33) and (35). Inserting the obtained result into Eq. (29) gives, after a little
algebra,
k ¼ ðcosh n� cos gÞ1=2 sin g
c

X1
n¼1

Ck;n coshðqnnÞ þ Sk;n sinhðqnnÞ½ �P 0
nðcos gÞ ð41Þ
6. Solutions for the integration constants

The integration constants Cm,n to Sm,n (m = 0,1 and 2) in Eqs. (36), and Ck,n and Sk,n in (41) can
be determined from the boundary conditions applied at both the particle surface and the gas–
liquid interface.
6.1. Slip gas–liquid interface

At the gas–liquid interface the velocity component normal to the interface vanishes, i.e.
wzðz ¼ 0Þ ¼ 0 ð42Þ
However, as there is slip at the gas–liquid interface, the other two velocity components at the
interface are non-zero, and the tangential stresses are zero, leading to
owx

oz

� �
z¼0

¼ 0 ð43Þ

owu

oz

� �
z¼0

¼ 0 ð44Þ
These boundary conditions can be used to find the solutions for a0, a1, a2 and k for the disturbance
flow from Eqs. (24)–(27) and (33)–(35). We can obtain
a1ðz ¼ 0Þ ¼ 0 ð45Þ

c sin g
1� cos g

ok
oz

� �
z¼0

þ oa0
oz

� �
z¼0

þ oa2
oz

� �
z¼0

þ o

oz
z
R

n ol
� �

z¼0

¼ 0 ð46Þ

oa0
oz

� �
z¼0

� oa2
oz

� �
z¼0

� o

oz
z
R

n ol
� �

z¼0

¼ 0 ð47Þ
where (ozl/oz)z=0 = 0 for l = 0 and 2, while (ozl/oz)z=0 = 1 for l = 1.
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6.2. Particle surface

At the particle surface, n = s, and the boundary conditions described by Eq. (20) give:
kc sin g
cosh s� cos g

þ a0 þ a2 ¼ �2
sinh2s

cosh s� cos g

� �l

ð48Þ

a2 � a0 ¼ 2
sinh2s

cosh s� cos g

� �l

ð49Þ

kc sinh s
cosh s� cos g

þ 2a1 ¼ 0 ð50Þ
6.3. Additional boundary conditions

The solutions described by Eqs. (36) and (41) contain eight unknown integration constants, but
the velocity-component boundary conditions applied at the gas–liquid interface and the particle
surface give rise to only six equations, viz. Eqs. (45)–(50). Two more equations are required
and can be obtained from the equation of continuity, described by Eq. (31), applied at the inter-
face and the particle surface, giving
3kþ x
ok
ox

þ z
ok
oz

þ oa2
ox

þ a2
x

þ oa0
ox

þ 2
oa1
oz

� �
n¼0 or s

¼ 0 ð51Þ
The derivation of the remaining unknown equation is presented later after some solutions for the
integration constants are available.

6.4. Algebraic equations for the integration constants

When z = 0, Eq. (39) gives n = 0. Therefore, the boundary condition given by Eq. (45) applied
at the plane z = 0 yields
C1;n ¼ 0 for all n ð52Þ
The solution given by Eq. (36) for a1 simplifies to
a1 ¼ ðcosh n� cos gÞ1=2 sin g
X1
n¼1

S1;n sinhðqnnÞP ðmÞ
n ðcos gÞ ð53Þ
6.4.1. Boundary condition equations at the gas–liquid interface
Both Eqs. (46) and (47) gives
2
oa0
oz

� �
z¼0

¼ 2
oa2
oz

� �
z¼0

þ 2
o

oz
zl

R

� �� �
z¼0

¼ � c sin g
1� cos g

ok
oz

� �
z¼0
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These dependencies can be applied as follows:

(A) Inserting the solutions for a0 and k into the first equation: 2ðoa0
oz Þz¼0 ¼ � c sin g

1�cos g ðokoz Þz¼0 gives
X1
n¼0

2S0;n � ð1� cos gÞPnðcos gÞ þ
X1
n¼1

Sk;n � sin2gP 0
nðcos gÞ ¼ 0 ð54Þ
We have the following recurrence relations (Magnus et al., 1966)
sin2gP 0
nðcos gÞ ¼

nðnþ 1Þ
2nþ 1

Pn�1ðcos gÞ � Pnþ1ðcos gÞ½ �

cos gPnðcos gÞ ¼
ðnþ 1ÞPnþ1ðcos gÞ þ nPn�1ðcos gÞ

2nþ 1
Applying these recurrence relations we obtain from Eq. (54)
X1
n¼0

S0;n2 Pnðcos gÞ �
ðnþ 1ÞPnþ1ðcos gÞ þ nPn�1ðcos gÞ

2nþ 1

� �

þ
X1
n¼1

Sk;n
nðnþ 1Þ
2nþ 1

Pn�1ðcos gÞ � Pnþ1ðcos gÞ½ � ¼ 0 ð55Þ
Rearranging gives
X1
n¼0

Pnþ1ðcos gÞ �ð2nþ 2ÞS0;n � ðn2 þ nÞSk;n

� 	
þ Pnðcos gÞð4nþ 2ÞS0;n

þ Pn�1ðcos gÞ �2nS0;n þ ðn2 þ nÞSk;n

� 	
¼ 0
Finally, equating terms with the same order of the Legendre polynomials we obtain
�2nS0;n�1 þ ð4nþ 2ÞS0;n � ð2nþ 2ÞS0;nþ1 � ðn2 � nÞSk;n�1 þ ðn2 þ 3nþ 2ÞSk;nþ1 ¼ 0 ð56Þ
This equation represents one of the required algebraic equations for determining the integration
constants.

(B) Using the second equation: 2ðoa2
oz Þz¼0 þ 2ð o

oz fz
l

RgÞz¼0 ¼ � c sin g
1�cos g ðokoz Þz¼0 gives
2ð1� cos gÞ
X1
n¼2

S2;nP 00
nðcos gÞ þ

2Xn

ð1� cos gÞ1=2
þ
X1
n¼1

Sk;nP 0
nðcos gÞ ¼ 0 ð57Þ
where Xn ¼
0 for l ¼ 0 and 2
sinh s for l ¼ 1

�
To solve Eq. (57) the following recurrence relations (Magnus et al., 1966) can be employed:
P 0
nðcos gÞ ¼

P 00
nþ1ðcos gÞ � P 00

n�1ðcos gÞ
2nþ 1

cos gP 00
nðcos gÞ ¼

ðn� 1ÞP 00
nþ1ðcos gÞ þ ðnþ 2ÞP 00

n�1ðcos gÞ
2nþ 1
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ð1� cos gÞ�1=2 ¼
ffiffiffi
2

p X1
n¼0

Pnðcos gÞ

¼
ffiffiffi
2

p X1
n¼2

P 00
nþ2ðcos gÞ

ð2nþ 3Þð2nþ 1Þ �
2P 00

nðcos gÞ
ð2nþ 3Þð2n� 1Þ þ

P 00
n�2ðcos gÞ

ð2nþ 1Þð2n� 1Þ
leading to
�ð2n� 4ÞS2;n�1 þ Sk;n�1

2n� 1
þ 2S2;n �

ð2nþ 6ÞS2;nþ1 þ Sk;nþ1

2nþ 3
¼ �96

ffiffiffi
2

p
Xn

45� 72n� 56n2 þ 32n3 þ 16n4

ð58Þ
This equation represents another required algebraic equation for the integration constants.

6.4.2. Continuity equation applied at the gas–liquid and liquid–solid interfaces
Inserting the solutions for a0, a1, a2 and k into the continuity equation, Eq. (51), applied at the

gas–liquid and liquid–solid interfaces and following similar procedure used to obtain the required
equations, Eqs. (56) and (58), gives, respectively,
� S0;n�1 þ 2S0;n � S0;nþ1 þ ðn2 � 3nþ 2ÞS2;n�1 � ð2n2 þ 2n� 4ÞS2;n þ ðn2 þ 5nþ 6ÞS2;nþ1

þ 5Sk;n�1 � ðn� 1ÞSk;n þ ðnþ 2ÞSk;nþ1 ¼ 0 ð59Þ

� C0;n�1 þ 2C0;n � C0;nþ1 þ ðn2 � 3nþ 2ÞC2;n�1 � ð2n2 þ 2n� 4ÞC2;n þ ðn2 þ 5nþ 6ÞC2;nþ1

þ 5Ck;n�1 � ðn� 1ÞCk;n þ ðnþ 2ÞCk;nþ1 þ ð2� 2nÞS1;n�1 þ ð4nþ 2ÞS1;n � ð2nþ 4ÞS1;nþ1 ¼ 0

ð60Þ
6.4.3. Numerical solutions for S0, S2 and Sk

Three equations, Eqs. (56), (58) and (59) for S0, S2 and Sk can be solved for a given value of H.
To do this, it is firstly realized that S0,n+1 = 0, S2,n+1 = 0 and Sk,n+1 = 0 on the basis that the series
S0,n+1, S2,n+1 and Sk,n+1 converge to zero if the summation index n is significantly large. The sig-
nificant solution of the remaining linear equations containing the unknown integration constants
can be solved numerically. The numerical solutions show that S0,n = S2,n = Sk,n = 0 for all n.
These solutions significantly simplify the analysis for the remaining unknown integration con-
stants, which is described below.

6.4.4. Boundary condition equations at the particle surface
Solving the boundary condition equations, Eqs. (48)–(50), at the particle surface gives:
ða0Þn¼s ¼ ða1Þn¼s

sin g
sinh s

� 2
sinh2s

cosh s� cos g

� �l

ð61Þ

ða2Þn¼s ¼ ða1Þn¼s

sin g
sinh s

ð62Þ
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ðkÞn¼s ¼ �2ða1Þn¼s

cosh s� cos g
c sinh s

ð63Þ
Inserting the appropriate solutions into Eqs. (61)–(63) lead to
X1
n¼0

C0;n coshðqnsÞPnðcos gÞ ¼
sin2g
sinh s

X1
n¼1

S1;n sinhðqnsÞP 0
nðcos gÞ �

2sinh2ls

ðcosh s� cos gÞlþ1=2
ð64Þ

X1
n¼2

C2;n coshðqnsÞP 00
nðcos gÞ ¼

1

sinh s

X1
n¼1

S1;n sinhðqnsÞP 0
nðcos gÞ ð65Þ

X1
n¼1

Ck;n coshðqnsÞP 0
nðcos gÞ þ 2

cosh s� cos g
sinh s

X1
n¼1

S1;n sinhðqnsÞP 0
nðcos gÞ ¼ 0 ð66Þ
The following recurrence relations can be used to solve Eqs. (64) and (65):
sin2gP 0
nðcos gÞ ¼

nðnþ 1Þ
2nþ 1

½Pn�1ðcos gÞ � Pnþ1ðcos gÞ�

P 0
nðcos gÞ ¼

P 00
nþ1ðcos gÞ � P 00

n�1ðcos gÞ
2nþ 1

cos gP 0
nðcos gÞ ¼

ðnþ 1ÞP 0
n�1ðcos gÞ þ nP 0

nþ1ðcos gÞ
2nþ 1

ðcosh s� rÞ�1=2 ¼
ffiffiffi
2

p X1
n¼0

PnðrÞ expð�qnsÞ

sinh s

ðcosh s� rÞ3=2
¼ 2

ffiffiffi
2

p X1
n¼0

PnðrÞqn expð�qnsÞ

sinh2s

ðcosh s� rÞ5=2
¼ 4

ffiffiffi
2

p

3

X1
n¼0

PnðrÞqnðqn þ coth sÞ expð�qnsÞ
Equating terms in Eqs. (64) and (65) with the same Legendre polynomials we obtain
C0;n ¼ �S1;n�1
n2 � n
2n� 1

sinhðqn�1sÞ
sinh s

þ S1;nþ1
n2 þ 3nþ 2

2nþ 3

sinhðqnþ1sÞ
sinh s

� Y n

� �
sechðqnsÞ ð67Þ

C2;n ¼ S1;n�1
sinhðqn�1sÞ

ð2n� 1Þ sinh s� S1;nþ1
sinhðqnþ1sÞ

ð2nþ 3Þ sinh s

� �
sechðqnsÞ ð68Þ

Ck;n ¼ S1;n�1
sinhðqn�1sÞ

sinhs
2n�2

2n�1
�S1;n2sinhðqnsÞcothsþS1;nþ1

sinhðqnþ1sÞ
sinhs

þ2nþ4

2nþ3

� �
sechðqnsÞ

ð69Þ
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where
Y n ¼
2

ffiffiffi
2

p
expð�qnsÞ for l ¼ 0

4
ffiffiffi
2

p
qn expð�qnsÞ sinh s for l ¼ 1

ð8
ffiffiffi
2

p
=3Þqnðqn þ coth sÞ expð�qnsÞsinh2s for l ¼ 2

8>><
>>:
Eqs. (67)–(69) can be substituted into the continuity Eq. (60), resulting in a system of linear equa-
tions for S1,1,S1,2, . . ., S1,n+1, which can be solved for a given value of H, realizing that S1,n+1 = 0
on the basis that the series S1,n converges to zero if the summation index n is significantly large.
The remaining n linear equations containing the n unknown S1,1,S1,2, . . ., S1,n can be solved
numerically.
7. Determination of resistance coefficient corrections

The vector of force and torque about the particle centre exerted by the liquid flow on the par-
ticle are determined by the following closed integrals over the particle surface (Happel and Bren-
ner, 1965b):
F ¼ tSP � dS ð70Þ

T ¼ tSR� ðP � dSÞ ð71Þ
where dS is a vector of surface area element, pointing into the liquid, and R is a vector related to
the particle centre. The pressure tensor, P, of the liquid flow is defined by
P ¼ �Ip þ l½rwþ ðrwÞy�
where I is the unit tensor and ($w)� is the transpose of the dyadic $w. Eqs. (70) and (71) in terms
of the basic variables of the system depicted in Fig. 2 can be expressed by
F l ¼ UGlR2l
Z 2p

0

Z 2p

0

sin h 2
ob
or

� k

� �
cos2u� oc

or
� bþ c

r

� �
sin2u


 ��

� oe
or

þ ob
oz

� �
cos2u� oc

oz
� e
r

� �
sin2u


 �
cos h

�
sin hdhdu ð72Þ

T l ¼ UGlR3l
Z 2p

0

Z 2p

0

cosu
oe
oz

� ob
or

� �
sin 2h� oe

or
þ ob

oz

� �
cos 2h


 ��

þ oc
or

� bþ c
r

� �
sin h cos h� oc

oz
� e
r

� �
cos2h


 �
sinu

�
sin hdhdu ð73Þ
where the subscript l is equal to 0,1 and 2 as described in Eq. (14). Both Eqs. (72) and (73) can be
further simplified using the continuity equation and the appropriate boundary conditions at the
particle surface, which gives, after some manipulation,
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F l ¼
plUGlc

2

Z 1

�1

kc sinh s sin g

ðcosh s� rÞ3
� c sin g

ðcosh s� rÞ2
ok
on

� 2

cosh s� r
oa0
on

" #
dr ð74Þ

T l ¼ plUGlc2
Z 1

�1

sin g
2

oðkc coth sþ 2a1Þ
on

þ kc cosh sþ 2a1 sinh s
cosh s� r

� �


þð1� r cosh sÞ � oa0
on

þ a0 sinh s
cosh s� r

� ��
dr

ðcosh s� rÞ2
ð75Þ
where r ¼ cos g. Substituting the equations for k, a0 and a1 into these equations and integrating
gives
F l ¼ plURGl

ffiffiffi
2

p
sinh s

X1
n¼0

C0;n þ S0;n þ ðn2 þ nÞðCk;n þ Sk;nÞ
� 	

T l ¼ plUR2Gl

ffiffiffi
2

p

3
sinh2s

X1
n¼0

½2þ e�2qns�fðn2 þ nÞð2S1;n þ Sk;n coth sÞ � ð2nþ 1� coth sÞS0;ng

þ ½2� e�2qns�fðn2 þ nÞCk;n coth s� ð2nþ 1� coth sÞC0;ng
These equations can be compared to the appropriate Stokes equations for particles in the bulk
phase, giving the following equations for the resistance coefficient factors, fshl and tshl (l = 0,1
and 2),
fshl � � F l

6plRW lðh=RÞ
¼

ffiffiffi
2

p

6

sinh s

coshls

X1
n¼0

C0;n þ ðn2 þ nÞCk;n

� 	
ð76Þ

gshl �
T l

8plR2W lðhÞ
¼ � sinh2s

12
ffiffiffi
2

p
coshls

X1
n¼0

½4þ 2e�2qns�ðn2 þ nÞS1;n

þ ½2� e�2qns� ðn2 þ nÞCk;n coth s� ð2nþ 1� coth sÞC0;n

� 	
ð77Þ
where h is the z coordinate of the particle centre (Fig. 2) and can be described by
h ¼ H þ R ¼ R cosh s
8. Results and discussion

8.1. Individual resistance functions

The numerical results for the resistance functions, fsh0, gsh0, fsh1, gsh1, fsh2 and gsh2 predicted by
Eqs. (76) and (77) are shown in Figs. 3–5. For the large separation distance, the resistance func-
tions for the forces are approximately equal to unity, showing insignificant influence of the inter-
faces on the forces, as expected for distant particles and bubbles. At large distances, the flow is
uniform, resulting in zero torque on the particles. However, as the separation distance decreases,
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both the resistance functions for the force and torque deviate from unity and zero, respectively,
due to the influence of the interfaces. The important difference between the results obtained for
the slip gas–liquid interface in this paper and the results obtained for the solid rigid surface (Go-
ren and O�Neill, 1971) is that the slip gas–liquid interface reduces the resistance functions for the
force due to the uniform and linear shear flows. The drag force of the shear flows on particles at
the slip gas–liquid interface is therefore smaller than in the liquid phase far from the interface.

8.2. Force of liquid shear flow on sliding particles

Due to the system asymmetry a particle in the shear flow in the tangential direction is subjected
to both the translational and rotational motions. The translation also generates a torque about
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the particle centre and the rotation creates an additional drag force. The sum of the translational
(tran), rotational (rot) and shear (sh) contributions allows for the drag (Fh) and torque (T) on a
particle to be described by
F h ¼ �6plRV hftran þ 6plXR2frot þ 6plRðW 0fsh0 þ W 1fsh1 þ W 2fsh2Þ ð78Þ

T ¼ 8plR2V hgtran � 8plXR3grot þ 8plR2ðW 0gsh0 þ W 1gsh1 þ W 2gsh2Þ ð79Þ

where X is the angular velocity.W0,W1 andW2 are the uniform, linear and parabolic terms of the
shear flow velocity, i.e., W = W0 + W1 + W2, which are described by Eq. (14). ftran and frot de-
scribe the hydrodynamic resistance functions due to the translational and rotational forces on
a particle translating in a stationary liquid. gtran and grot describe the hydrodynamic resistance
functions due to the torques of the translational and rotational contributions on a particle rotat-
ing in a stationary liquid. fsh0, fsh1 and fsh2 describing the hydrodynamic resistance functions due
to the forces of the linear and parabolic terms of the shear velocity on a stationary particle are
given by Eq. (76). gsh0, gsh1 and gsh2 describing the hydrodynamic resistance functions due to
the torques of the linear and parabolic terms of the shear velocity on a stationary particle are
determined by Eq. (77).

For sliding particles the combined torque must be balanced by the particle internal reaction,
leading to T = 0, which gives
XR ¼ V h
gtran
grot

þ W 0gsh0 þ W 1gsh1 þW 2gsh2
grot

ð80Þ
Substitution of Eq. (80) into Eq. (78) and comparing with Eq. (2) yields
f3 ¼ ftran � frot
gtran
grot

ð81Þ

f4 ¼
W 0f40 þ W 1f41 þW 2f42

W 0 þ W 1 þ W 2

ð82Þ
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where
F

f40 ¼ fsh0 þ gsh0
frot
grot

ð83Þ

f41 ¼ fsh1 þ gsh1
frot
grot

ð84Þ

f42 ¼ fsh2 þ gsh2
frot
grot

ð85Þ
The resistance functions, frot and grot can also be determined from the Stokes equation. The results
for frot and grot for a particle rotating parallel to a slip gas–liquid interface are shown in Fig. 6.
This problem will be dealt with in further detail elsewhere.

Now knowing frot, grot, fsh0, gsh0, fsh1, gsh1, fsh2 and gsh2 as a function of the separation distance
we can determine the force correction factors described by Eqs. (83)–(85) for sliding particles. The
results are shown in Fig. 7. Clearly, the influence of the shear flow on the resistance is different for
the uniform, linear and parabolic shear components. In all cases, the force correction factors ap-
proach unity in the limit of large separation distances. However, as the separation approaches
zero, the correction factors deviate from unity, approaching different constant values of 0.74,
0.85 and 1.20 for the uniform, linear and parabolic shear flows, respectively.

For the bubble–particle interaction modelling exercises, the numerical data for the force correc-
tion factors as a function of the separation distance, H/R, can be better replaced by simple
approximate equations. As can be seen from Fig. 7, these functions approach the finite values
at H/R = 0, and unity when H/R is very large. Based on these asymptotes, simple approximations
for the force correction factors are expected to have the functional dependence of the form
(a + H/R)/(b + H/R). The numerical constants a and b can be obtained by the best fit to the
numerical data shown in Fig. 7. The best fit was solved by the non-linear least squares procedure,
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which uses a quasi-Newton algorithm, with a forward difference scheme and a linear extrapolation
to obtain initial estimates from a tangent vector, at each iteration to determine the direction to
search. The resultant approximate expressions for the force correction factors as a function of
H/R can be described by
f40 ¼
1:107þ H=R
1:502þ H=R

ð86Þ

f41 ¼
3:676þ H=R
4:304þ H=R

ð87Þ

f42 ¼
0:166þ H=R
0:136þ H=R

ð88Þ
These equations represent the global rational approximations for the force correction factors for
the whole range of the separation distance.

It is also interesting to note that when the separation distance is significantly small, the drag
force correction factors approach constants values. The asymptotic value is smaller than unity
in the case of the uniform and linear shear flows, while it is greater than one for the parabolic
shear flow. The individual asymptotic behaviours of the correction factors reflect the nature of
the slip boundary conditions used at the gas–liquid interface. If the interface is no-slip, the drag
forces and the force correction factors asymptotically increases to infinity. It will be important to
investigate the situation when the particle comes into contact with the interface, with different wet-
ting (contact angle) properties. We will address this problem in a forthcoming paper.

As described in the Section 1, the gas–liquid interface may be deformed during the bubble–par-
ticle attachment interaction. However, this deformation strongly depends on angle and magnitude
of the bubble–particle approach velocity. If a particle approaches a bubble in the direction normal
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to the bubble surface, the momentum of the approach is high, causing strong deformation of the
local gas–liquid interface (Fig. 8). This bubble–particle interaction is called the collision attach-
ment interaction and is significant for coarse particle flotation. The deformation of the gas–liquid
interface is negligibly small (Schulze, 1989) for the particle size of about 50–100 lm and the bub-
ble size of about 1–2 mm which are typically encountered in the flotation separation process. For
these particles and bubbles, the attachment is governed by the sliding interaction and the gas–li-
quid interface can be locally planar in comparison to the curvature of the particle surface, which is
described in this paper. For the coarse particle flotation, the theory presented in this paper re-
quires a modification to consider the local deformation of the gas–liquid interface as the curvature
of the local gas–liquid interface is compatible to the curvature of the particle surface and will
influence the hydrodynamic interaction at short separation distances.
9. Conclusions

A mathematical model was developed to describe the hydrodynamic forces and torques on a
fine solid sphere due to shear flows parallel to a slip surface of a rising air bubble. The liquid shear
flow close to the bubble surface was determined using a Taylor series expansion and the numerical
data obtained from the Navier–Stokes equation using CFD code FLUENT. The shear flow has
three major components, corresponding to the uniform, linear and parabolic shear flows. The dis-
turbance shear flows due to the particle were determined from the full Stokes equations described
using the local cylindrical. The Stokes equations were solved for the velocity components and



512 A.V. Nguyen, G.J. Jameson / International Journal of Multiphase Flow 31 (2005) 492–513
pressure using the infinite series described in terms of the bispherical coordinates. The integration
constants were determined from the no-slip boundary conditions at the particle surface and the
slip boundary conditions at the gas–liquid interface, which produced a linear system of algebraic
equations. The system of algebraic equations was solved numerically assuming that the integra-
tion constants converge to zero if the summation index of the infinite series is significantly large.
The integration constants were then used to determine the resistance forces and torques on the
particle. The force and torque equations were compared to the Stokes equation for the drag force
and the equation for the torque in the bulk phase to obtain the resistance functions, which de-
scribe the deviations as functions of the separation distance between the particle and bubble sur-
faces. For sliding particles the resultant torque is balanced, allowing the angular velocity to be
determined. The force correction factors for sliding particles were determined as functions of
the separation distance. Finally, rational approximate expressions are presented for the force cor-
rection factors, which are in good agreement with the exact numerical result and can be readily
applied to the bubble–particle modelling exercises.
Acknowledgement

The authors gratefully acknowledge the Australian Research Council for financial support.
References

Batchelor, G.K., 1972. Sedimentation in a dilute suspension of spheres. J. Fluid Mech. 52, 245–268.
Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles, Drops and Particles. Academic Press, New York, 380 pp.
Dai, Z., Fornasiero, D., Ralston, J., 2000. Particle–bubble collision models—a review. Adv. Colloid Interface Sci. 85,

231–256.
Dobby, G.S., Finch, J.A., 1986. A model of particle sliding time for flotation size bubbles. J. Colloid Interface Sci. 109,

493–498.
Dobby, G.S., Finch, J.A., 1987. Particle size dependence in flotation derived from a fundamental model of the capture

process. Int. J. Miner. Process. 21, 241–260.
Goldman, A.J., Cox, R.G., Brenner, H., 1967a. Slow viscous motion of a sphere parallel to a plane wall I. Motion

through a quiescent fluid. Chem. Eng. Sci. 22, 637–651.
Goldman, A.J., Cox, R.G., Brenner, H., 1967b. Slow viscous motion of a sphere parallel to a plane wall II. Couette

flow. Chem. Eng. Sci. 22, 653–660.
Goren, S.L., O�Neill, M.E., 1971. Hydrodynamic resistance to a particle of a dilute suspension when in the

neighborhood of a large obstacle. Chem. Eng. Sci. 26, 325–338.
Happel, J., Brenner, H., 1965a. Low Reynolds Number Hydrodynamics. Prentice Hall, Englewood Cliffs, NJ, 438 pp.
Happel, J., Brenner, H., 1965. Low Reynolds number hydrodynamics with special applications to particulate media.

Prentice-Hall International Series in the Physical and Chemical Engineering Sciences, 553 pp.
Jameson, G.J., Nam, S., Young, M.M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng. 9,

103–118.
Magnus, W., Oberhettinger, F., Soni, R.P., 1966. Formulas and Theorem for Special Functions of Mathematical

Physics. Springer-Verlag, New York, 476 pp.
Moore, D.W., 1963. The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161–176.
Nguyen, A.V., 1993. On the sliding time in flotation. Int. J. Miner. Process. 37, 1–25.
Nguyen, A.V., 1994. The collision between fine particles and single air bubbles in flotation. J. Colloid Interface Sci. 162,

123–128.



A.V. Nguyen, G.J. Jameson / International Journal of Multiphase Flow 31 (2005) 492–513 513
Nguyen, A.V., 1999. Hydrodynamics of liquid flows around air bubbles in flotation: a review. Int. J. Miner. Process. 56,
165–205.

Nguyen, A.V., Evans, G.M., 2002. Axisymmetric approach of a solid sphere toward a non-deformable planar slip
interface in the normal stagnation flow—development of global rational approximations for resistance coefficients.
Int. J. Multiphase Flow 28, 1369–1380.

Nguyen, A.V., Evans, G.M., 2004. Exact and global rational approximate expressions for resistance coefficients for a
colloidal solid sphere moving in a quiescent liquid parallel to a slip gas–liquid interface. J. Colloid Interface Sci. 273,
262–270.

Schulze, H.J., 1983. Physico-Chemical Elementary Processes in Flotation. In: Fuerstenau, D.W. (Ed.), Developments in
Mineral Processing, vol. 4. Elsevier, Amsterdam, p. 320.

Schulze, H.J., 1989. Hydrodynamics of bubble–mineral particle collisions. Miner. Process. Extract. Met. Rev. 5, 43–76.


	Sliding of fine particles on the slip surface of rising gas bubbles: Resistance of liquid shear flows
	Introduction
	The shear flow close to the slip surface of an rising air bubble
	Governing equations for the local disturbance flow
	Boundary conditions for the local disturbance shear flow
	Method and solution for the local disturbance shear flow
	Solutions for the integration constants
	Slip gas ndash liquid interface
	Particle surface
	Additional boundary conditions
	Algebraic equations for the integration constants
	Boundary condition equations at the gas ndash liquid interface
	Continuity equation applied at the gas ndash liquid and liquid ndash solid interfaces
	Numerical solutions for S0, S2 and S lambda 
	Boundary condition equations at the particle surface


	Determination of resistance coefficient corrections
	Results and discussion
	Individual resistance functions
	Force of liquid shear flow on sliding particles

	Conclusions
	Acknowledgement
	References


